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A steady, two-dimensional cellular convection modifies the morphological instability
of a binary alloy that undergoes directional solidification. When the convection
wavelength is far longer than that of the morphological cells, the behaviour of the
moving front is described by a slow, spatial–temporal dynamics obtained through
a multiple-scale analysis. The resulting system has a parametric-excitation structure
in space, with complex parameters characterizing the interactions between flow,
solute diffusion, and rejection. The convection in general stabilizes two-dimensional
disturbances, but destabilizes three-dimensional disturbances. When the flow is weak,
the morphological instability is incommensurate with the flow wavelength, but as the
flow gets stronger, the instability becomes quantized and forced to fit into the flow
box. At large flow strength the instability is localized, confined in narrow envelopes. In
this case the solutions are discrete eigenstates in an unbounded space. Their stability
boundaries and asymptotics are obtained by a WKB analysis. The weakly nonlinear
interaction is delivered through the Lyapunov–Schmidt method.

1. Introduction
In the absence of flow, the morphological instability of a binary alloy undergoing

directional solidification is driven by the adverse gradient of solute concentration at
the solid–liquid interface. This instability occurs when the interface advances with a
speed V greater than a critical value Vc, when cellular patterns form on the moving
front. When the liquid (melt) is flowing, the solute concentration profile is altered. In
general, the liquid motions may delay or promote the instability, depending on the
interactions between the solute and momentum transport.

Flow-modified morphological instability has been studied by many authors (e.g.
see Davis 1993 for a review). Flows can be inherent to the solidifying process, such as
solutal convection in a density-stratified melt (Coriell et al. 1980; Coriell & McFadden
1989). The motion here is due to buoyancy effects that exist even when the interface
is not deformable. Flows can also be imposed through far-field forcing. Examples
include plane Couette flow (Coriell, McFadden & Boisvert 1984), an asymptotic
suction profile (Forth & Wheeler 1989; Hobbs & Metzener 1991; Schulze & Davis
1994), and stagnation-point flow (Brattkus & Davis 1988).

In the present analysis we examine the morphological instability of a front propa-
gating into a pre-existing cellular convective flow (see figure 1). Such flows exist when
thermal or hydrodynamic instabilities occur before the morphological instability, or
when the liquid is subjected to a high-frequency vibration or acceleration (g-jitter).
The flow is considered to be spatially periodic, with a wavelength 2π/α̂ typically
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Figure 1. Schematic diagram for a spatially periodic flow imposed on
the solid–liquid interface of a binary alloy.

much longer than the wavelength 2π/β of the intrinsic morphological instability. This
assumption is appropriate for metallic alloys for which typical Schmidt numbers are
large, and the viscous lengthscale can be ten or a hundred times longer than the
diffusion lengthscale. The present work is related to that of Bühler & Davis (1998), in
which numerical calculations of the two-dimensional linear problem have been per-
formed. Their study showed that in such flows the morphological instability can be
confined in localized envelopes, distributed spatially periodically along the interface.
Each envelope contains many morphological cells travelling in the flow direction.
The stability and mechanism of the onset of this solution have yet to be revealed.
We extend their analysis and perform stability analysis in the linear and weakly
nonlinear regimes. The disturbance is allowed to be three-dimensional, in contrast to
the two-dimensional morphology studied in Bühler & Davis (1998).

We treat the solutal–momentum transport as a perturbation of the Mullins–Sekerka
problem (Mullins & Sekerka 1964). The ‘pure’ (no-flow) morphological instability
has its critical wavenumber βc at a critical morphological number Mc, as shown
schematically in figure 2(a). For α̂ small compared with βc, we use a multiple-scale
analysis near the linear-theory critical point (βc,Mc). The resulting dynamics has a
‘parametric-excitation’ form in the slow spatial variable, where the periodic coefficients
are generated by the cellular flow. The eigenvalue problem of the linearized equation
is solved by the numerical branch-tracing technique, with the asymptotics obtained
through a WKB-type analysis. Problems of a similar structure have occurred in a
number of areas of chemical physics such as molecular spectroscopy and the band
theory of solids (see Connor et al. 1984), and in the Bénard convection problem with
a slow spatial variation of the thermal forcing (Pal & Kelly 1979; Walton 1982). Here,
we study the situation of directional solidification coupled with convection.

We observe that disturbances (rolls) periodic in the flow direction (figure 2b) are
stabilized. The tangential component of the flow either compresses or stretches the
morphological cells along the interface, which alters the wave structure and pushes
the disturbances to the regime where the surface tension or solute diffusion helps to
stabilize them. In contrast, the normal component of the flow has a strong tendency
to destabilize rolls parallel to the flow (figure 2d). In both cases, the morphologies
have incommensurable structures (aperiodic in space) when the flow is weak, and
develop localized wave envelopes, as observed in the two-dimensional case in Bühler
& Davis (1998), when the flow strength increases. The stability boundary and onset
of the travelling cells are identified. Nonlinear interactions of the branching solutions
are also discussed.

This paper is organized as follows. Sections 2 and 3 provide the background to the
flow-modified morphological problem. We assume that the spatial scale and amplitude
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Figure 2. (a) Neutral stability curve for the pure (no-flow) morphological problem. Solutions in the
hatched area are unstable. The morphological cell has a wave vector (b) parallel, (c) at an angle θ,
and (d) perpendicular to the flow direction. Series of parallel lines indicate fronts of the cells.

of the flow, and not its details, are important for the morphological instability. Thus, it
is possible to introduce a model cellular convection that is driven by an assumed body
force. In § 4 we outline the procedures of obtaining the slow-variable equations for
roll-like disturbances. Competition between the effects of tangential- and normal-flow
components are controlled by the angle θ between the rolls and flow direction. The
linear stability analysis is given in § 5. Possible localized, two-dimensional and three-
dimensional morphologies are obtained. In § 6 we demonstrate that the localization is
realizable in a weakly nonlinear regime. The paper closes with a summary and brief
discussion.

2. Solutal transport equations
Consider a dilute binary alloy solidifying into a cellular flow field. The averaged

solid–liquid interface moves with a constant velocity V . The solute rejected on the
interface has a partition coefficient k and diffusivity D in the liquid. We invoke
the ‘frozen temperature approximation’ (Langer 1980) that gives the temperature
T in the solid and liquid permanently by T = T0 + Gz, where G is the imposed
temperature gradient and T0 is a reference temperature. The temperature will not
be disturbed when the thermal boundary layer is far thicker than both momentum
and concentration boundary layers. The coordinate variable z is fixed on the moving
front with positive z-direction pointing into the liquid. The interfacial coordinates are
spanned by the (x, y)-axes.

We choose the velocity, time, length, and concentration scales to be V , D/V 2,
`c ≡ D/V , and ∆c ≡ (1/k − 1)c∞, respectively. Referred to these scalings and the
chosen coordinates, the solutal transport equation in the liquid can be written

Sc−1[∂tv + (v − êz) · ∇v] = −∇p+ ∇2v + B,

∇ · v = 0, ∂tc+ (v − êz) · ∇c = ∇2c.

}
(2.1)

In the above formulation we have assumed the melt to be an incompressible, New-
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tonian liquid. The Schmidt number Sc is the ratio of the kinematic viscosity of the
liquid to the solute diffusivity. The buoyancy field B is 2π/α̂-periodic in x and is the
driving force of the convective flow.

It is assumed that the density change upon solidification is negligible, so that the
condition v = 0 is applied on the solid–liquid interface z = H(x, y, t), and the velocity
v approaches the far-field distribution v∞ as z → ∞. The solute boundary conditions
on the interface consist of mass conservation and local thermodynamic equilibrium:

vn[(1− k)c+ k] = −n̂ · ∇c (2.2)

M−1H = 1− c+ ΓK(H). (2.3)

Here, n̂ is the unit normal vector pointing into the liquid phase, vn the speed of the front
normal to itself, and K the curvature, a functional of the interface shape function:
K(H) = ∇ · [∇H{1 + (∇H)2}−1/2]. The mass conservation law (2.2) assumes that solute
diffusion in the solid is negligible compared with that in the liquid. The Gibbs–
Thomson condition (2.3) depicts the departure of the temperature of the interface
from the equilibrium melting temperature of the pure solvent due to the presence of
solute (constitutional undercooling) and the curvature of the interface itself (capillary
undercooling). The morphological number and surface energy parameter are given
by

M ≡ m̃Gc

G
, Γ ≡ Tmγ

m̃Gc`2
cLv

,

where Gc ≡ −∆c/`c measures the concentration gradient. The liquidus slope of the
phase diagram is denoted by m̃, and the parameters γ, Tm, Lv stand for surface tension,
solvent melting temperature, and latent heat per unit volume, respectively.

When B ≡ 0 the above system has a solution (v, H, c) = (0, 0, e−z). Consider the
stability of this (quiescent) solution to normal-mode perturbations e i β·(x,y)+σt. Linear
stability analysis (Mullins & Sekerka 1964) results in the neutral stability curve
(σ = 0), given by

M−1 = 1− Γβ2 − k

k + q − 1
,

where q ≡ 1
2
[1 + (1 + 4β2)1/2], and solutions within the curve are unstable (σ > 0; see

figure 2a). This neutral curve has a maximum at M−1
c for a critical wavenumber βc that

determines the cellular structure near the onset of the instability. Figure 3(a) shows
the locus of the critical points (the marginal stability curve) in a pair of transformed
coordinates, in which (Mc Γ )1/2 is proportional to V and independent of c∞, and the
reverse is true for (Mc/Γ )1/2. The plot shows the relationship between the critical
pulling speed Vc and the far-field concentration c∞ when other physical properties are
fixed, and is more appropriate for comparison with experimental observations. For
a binary alloy in directional solidification, it is convenient to have constant physical
properties and let the pulling speed V vary. When an experiment is operated at a
speed V that is inside the unstable region of the marginal stability curve, a cellular
pattern forms. The location where a vertical line of constant c∞ intercepts the lower
marginal curve determines the critical pulling speed Vc (figure 3a).

3. Basic state
The given cellular flow has a spatial period 2π/α̂, which is considered to be much

longer than the morphological lengthscale 2π/βc. The velocity field is represented
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Figure 3. (a) Marginal stability curve for the pure morphological problem with k = 0.3.
S denotes stable and U denotes unstable regions. Solid (dashed) line represents supercritical (sub-
critical) bifurcation. The arrow indicates a path reaching the critical pulling speed Vc for a given
c∞. (b) Coefficients (a, Γ ,M−1

c ) along the marginal stability curve. (c) Scaling coefficients (µ1, µ2, µ3)
in the flow-modified problem. Values are obtained with an additional flow parameter s = 1. (d) χ
plotted against s when βc = 0.58.

by a simple sinusoidal function in the direction x, and exponential in z. We use P
to denote the magnitude of the far-field velocity, and consider the case when the
tangential component has the form

u = −[1− e−z/s]P sin α̂x (3.1)

as the interface is flat. This flow has diverging [converging] stagnation points at
(2n+1)π/α̂ [2nπ/α̂]. The parameter s distinguishes a general class of flows. As discussed
by Bühler & Davis (1998), its magnitude represents the thickness of the viscous
boundary layer near the interface. Flow type (3.1) is motivated by the ‘asymptotic
suction profile’, in which the remote field, −P sin α̂x, is replaced by a constant, and the
parameter s is equivalent to the Schmidt number Sc. The asymptotic suction profile
is an exact solution to the momentum equation, whereas the remote flow (3.1) here
serves as an approximation for flows near the interface. This enables us to simplify
the analysis and consider only the situation of large-Schmidt-number metallic alloys
(Sc→∞). Consequently, the liquid inertia is neglected, and the parameter s can take
any positive value (0 < s < ∞).

Flows with s 6 1 can occur in a Hele-Shaw-like apparatus for example, where
the close proximity of the sidewalls creates a thin viscous boundary layer. Boundary
layers of exponential type are also observed in electrically conducting liquid with
flows induced by strong magnetic fields. For those examples the spatial period 2π/α̂
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can be introduced through solutal buoyancy or magnetohydrodynamic instability.
Accordingly, the body force B in the momentum transport equation would correspond
to buoyancy force or Lorentz force, respectively.

We restrict our attention to the case when the basic flow is two-dimensional, but
accept three-dimensional disturbances. The velocity field can be expressed in terms of
the stream function as v̄ = ∇× (ψ̄êy). In this formulation the velocity has components
(ū, w̄) in the (x, z) directions. We further introduce a coordinate transformation

ζ = eH−z

which maps the interface position z = H to ζ = 1 and the far field z → ∞ to
ζ → 0. The transformation is particularly suitable for nonlinear analysis that requires
calculations of higher-order expansions. In this ‘Lagrangian’ coordinate the stream
function with velocity component given by (3.1) is now written

ψ̄(x, ζ) = −[s+ ln ζ − sζ1/s]P sin α̂x. (3.2)

We shall consider (3.2) as the basic-state flow.
When the flow field is treated as an approximate solution to the momentum

transport equation, the resulting solutal and interfacial profiles (c̄, H̄) can be obtained
asymptotically by introducing the expansions

c̄(α̂x, ζ) ∼ ζ + α̂δ̂c̄1(ζ) cos α̂x,

H̄(α̂x) ∼ 0 + α̂δ̂H̄1 cos α̂x,

}
(3.3)

into the solutal transport equation and boundary conditions. Here, we have scaled
the flow by

δ̂ ≡ P/(1 + s),

and employed a expansion parameter α̂δ̂ to indicate the order of magnitude of the
flow perturbation. The perturbations c̄1 and H̄1 are obtained by solving the equations

(1)–(3) at O(α̂δ̂) (see Bühler & Davis 1998), which gives

c̄1 = ζ[1/k + (s2 − 1) ln ζ + 1
2
(s+ 1) ln2 ζ + s3(1− ζ1/s)],

H̄1 = −1/(kM−1).

}
(3.4)

The expansion (3.3) uses the fact that the solutal and interfacial shape functions are

weakly perturbed from the profiles of the quiescent case as α̂δ̂ � 1. The parameter

δ̂ represents the magnitude of the velocity near the interface when s � 1, and the
velocity gradient when s� 1. This scaling is introduced in the expansions, since only
the magnitude of the flow is important when the concentration boundary layer is
subjected to an extremely thin viscous layer, while for a thick viscous layer only the
velocity gradient near the interface is relevant to the convective transport.

4. Dynamics in slow variables
The imposed flow field breaks the rotational symmetry of the crystal surface. We

shall subject the basic state (3.2), (3.3) to a ‘roll-like’ disturbance, with an angle θ
to the flow direction (cf. figure 2c). Recall that, in the absence of flow, the most
dangerous perturbation is the normal mode e i βc·(x,y) at the critical morphological

number Mc. In the case of a weak flow (small δ̂) the motion introduces a slow spatial
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change. It is thus reasonable to assume that the most dangerous disturbance now
has a form f(εx) e i βc·(x,y), 0 < ε � 1, where f(εx) is a slowly varying function in the
x-coordinate. The parameter ε enables us to perform a multiple-scale analysis near
the point (βc,Mc) (see figure 2).

Formally, we assume a perturbation expansion:

M−1 = M−1
c − µ1ε

2m, δ̂ = µ2ε
2δ,

τ = µ3ε
2t, ηi = εiβcx, α̂/βc = εα,

u ∼ ū+ {εu1(τ, ηi, ζ) + ε2u2 + ε3u3} e i βc·(x,y) + {c.c.},
where u = (c, H, v), c.c. represents complex conjugate, and µi are real-valued, positive
coefficients which will be determined later. By substituting the above expansions into
the governing transport equations, and collecting like powers of ε, we arrive at a
series of linear problems, which can be written as

Lu1 = 0, O(ε),

Lu2 = F2(u1), O(ε2),

Lu3 = F3(u1, u2), O(ε3),

where L is the linear operator of the no-flow case. Since the operator L is singular,
the solvability condition is necessary to solve ui at each order. The quadratic nature
of the turning point at (βc,Mc) results in the inhomogeneous term F2(u1) that is
already in the range of L. The leading-order behaviour of H1 is then determined by
the solvability condition at O(ε3). This procedure results in a dynamical system in the
slow variable (dropping subscript ‘1’):

∂τH = [m+ i δ cos θ sin αη]H + cos2 θ ∂2
ηH − aH |H |2

+O(εαδ cos αη H, εδ sin αη ∂ηH). (4.1)

The Landau constant a determines the supercriticality (a > 0) or subcriticality (a < 0)
of the system. This calculation is performed using a symbolic computation software
and the resulting coefficients are listed in table 1 (see also figure 3 for coefficients
of selected parameters). When δ ≡ 0, equation (4.1) recovers the Landau equation
of the pure morphological problem in Wollkind & Segel (1970). Equation (4.1) is
written in the form for which the morphological instability has an O(1) wavenumber
in the remote-flow direction (cos θ ≈ 1; cf. figure 2b). In this case the tangential-flow
component, δ sin αη, is dominant, and the normal component, αδ cos αη, is formally
O(ε).

It can be seen from (4.1) that the tangential-flow contribution (proportional to
cos θ) becomes weaker as θ increases (cf. figure 2b and figure 2c). When θ approaches
π/2, i.e. when the wavevector βc is perpendicular to the flow direction (figure 2d),
the tangential and normal components of the flow will have the same order of
magnitude, O(ε) in equation (4.1); the slow-variable dynamics must then be modified.
In this regime we rescale the flow parameter δ∗ = εδ such that the flow interacts
with the morphological instability at O(ε3), and redo the multiple-scale analysis. The
resulting slow-variable dynamics is governed by

∂τH = [m+ χαδ∗ cos αη]H + δ∗ sin αη ∂ηH − aH |H |2 − 1
4
ε2∂4

ηH. (4.2)

The fourth-order derivative appears at the higher order of ε. Here, the coefficient
χ = χ(k, Γ , s) is a parameter (see table 1) that characterizes the strength of the normal
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µ1 = 4Γ (k + 3q − 2)β4
c /[(2q − 1)2(k + q − 1)].

µ2 = 4Γ (k + 3q − 2)β4
c /[(2q − 1)2ϕβc].

µ3 = 4Γ (k + 3q − 2)β4
c /[(2q − 1)2{1− Γ (k + q − 1)}].

χ = 1 + [Γ (k + q − 1)(1 + s)(q − 1)/{(2q − 1)[s(2q − 1) + 1]}+ (1/k − 1)(q − 1)]/ϕ.

ϕ = Γ (k + q − 1)(1 + s)/[s(1− 2q)− 1] + s(1 + s)[s(1− q) + 1]/[(1− s2β2
c )

2

×{s2q(q − 1)− (1 + s)}] + βc(1 + s)(s3β3
c − 2sβc + 1)/[(1− s2β2

c )
2{(2βc + 1)

×(βc + 1− q)/β2
c − 1/βc}] + (1 + s)(βc + 1− q)/[βc(1− s2β2

c )
2].

Table 1. Coefficients in the slow-variable equations. The Landau constant a can be found in
Wollkind & Segel (1970).

component of the convection relative to that of the tangential component. In our
cellular flow setting this parameter is a monotone-increasing function of s and is
always greater than unity (figure 3d), which implies that a thicker viscous boundary
layer (larger s) will induce a stronger contribution from the flow-normal component
(larger χ) to the cellular morphology.

Alternatively, one can stretch the spatial coordinate x → ε1/2x in the primitive
equations (Newell & Whitehead 1969) and bring the fourth-derivative term into the
O(ε3) equation. This rescaling, however, is equivalent to a change of the slow variable:
η → ε1/2η, with a pair of redefined (α, δ∗). Therefore, without loss of generality, the
system is governed by (4.2); the surface-tension term ∂4

ηH acts as a regularization.

5. Linear stability analysis
To determine the initial behaviour of small disturbances we neglect the nonlinear

terms in (4.1), (4.2). It is convenient in the analysis to study only the normal mode:
H(τ, η) 7→ e(σ+iω)τH(η), and have the disturbance wave vector orientated towards
either the x- or y-axis (cf. figure 2b, d). The resulting system is then referred to
as ‘two-dimensional’ (2D) and ‘longitudinal’ (3D) rolls respectively, according to its
morphological structure:

2D-roll:
d2H

dη2
+ [(m− σ)− iω + i δ sin αη]H = 0, (5.1)

longitudinal-roll: − ε2

4

d4H

dη4
+ δ∗ sin αη

dH

dη
+ [(m− σ)− iω + χαδ∗ cos αη]H = 0.

(5.2)

The two systems have parametric-excitation forms, driven by the imposed flow. In
analogy to a pendulum problem, the 2D-roll equation describes the motion of a
‘spatial pendulum’ that has a periodic spring constant in accordance with the flow
period, and is controlled by complex parameters. The longitudinal-roll equation, as
noted, is a singular perturbation problem. The term d4H/dη4 is retained since it acts
non-uniformly in space.

Floquet theory describes the complicated nature of the spatial behaviour (e.g. see
McLachlan 1947, and Mulholland & Goldstein 1929 for complex coefficients). The
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Figure 4. Characteristic curves for the 2D-roll equation. Thick lines are period-(2π/α) (harmonic)
solutions and thin lines are period-(4π/α) (subharmonic) solutions. Solutions in the shaded area have
spatial structures incommensurate with the flow period. Solid circles represent doubly degenerate
points. S denotes stable, U denotes unstable regions. MSB denotes marginal stability boundary.

coefficients have period 2π/α, and there are solutions in the form

H(η) = eΛηΦ(η), Φ(η + 2π/α) = Φ(η),

where Λ is the Floquet exponent. Since we are concerned only with the spatially
bounded solutions (eigenfunctions), this demands ReΛ = 0. Figures 4 and 5 show
the characteristic boundaries of these solutions, in which the lines were obtained
by the numerical branch-tracing technique (Doedel 1981), and numbers indicate the
number of modes that have lengths fitted into the flow box. The branching solutions
were traced in [δ/α2, (m − σ)/α2, ω/α2] parametric space for the 2D-roll equation,
and [δ∗/(α3ε2), (m − σ)/(α4ε2), ω/(α4ε2)] space for the longitudinal-roll equation with
a selected χ > 1. The parameters listed above represent appropriate scalings when α
is small.

In figures 4 and 5 we plot the characteristic curves of the (2π/α)-periodic (har-
monic) and (4π/α)-periodic (subharmonic) solutions. Solutions within the charac-
teristic boundaries are aperiodic functions, and the interfacial perturbations H(η)
are incommensurate (spatially unsynchronized) with the flow. These ‘incommensurate
bands’ are shaded in the figures. For the 2D-roll equation, all subharmonic solutions
(thin lines in the figure) are oscillatory (ω 6= 0). The harmonic solutions (thick lines)
are stationary (ω = 0) when δ/α2 is small, but change to time-dependent solutions
at the doubly degenerate points where branches of solutions cross and pairs of oscil-
latory modes (ω = ±ω∗) bifurcate. In contrast, all solutions of the longitudinal roll
are stationary (figure 5), with the incommensurate bands shrinking to thin, film-like
layers as δ∗/(α3ε2) � 1. This behaviour suggests that the eigenstates are essentially
quantized. That is, discrete eigenmodes exist in an unbounded state, and the induced
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morphology has a structure spatially synchronized with the flow. In the longitudinal-
roll perturbation, this quantization occurs due to the regularization by the surface
tension (cf. equation (5.2)). The morphological cells have secondary structure near the
converging stagnation points αη = 2nπ (see figure 6). For the two-dimensional distur-
bance, the quantization occurs at high flow strength (large δ/α2) beyond the doubly
degenerate points. These oscillatory modes are in agreement with the travelling-cell
solutions observed in Bühler & Davis (1998), in which left-going cells have localized
envelopes at αη = (2n+ 1

2
)π, and right-going cells at αη = (2n− 1

2
)π. Superposition of

these two solutions leads to cells travelling in the flow direction, with the amplitude
confined in narrow envelopes located between the stagnation points (figure 7).

Consider the case when σ = 0 so that the eigenfunctions are neutrally stable
solutions. In the absence of flow, these neutral solutions represents a continuous
spectrum along the semi-infinite interval, m > 0. The minimum, m = 0, is equivalent
to the marginal stability limit of the classical Mullins–Sekerka problem, M = Mc (cf.
figure 2a). When the flow is present, this continuous spectrum is broken into segments
due to parametric resonance, and the eigensolutions that were formerly bounded in
the no-flow case now may be amplified. Consequently, sequences of intervals in the
parametric space are missing from the spectrum. This scenario is sketched in figure 8,
according to the branch-tracing calculations (figures 4 and 5), with the scaled flow
strength increasing from figures 8(a) to 8(c). Bands of the spectrum contract into lines
(or extremely thin layers) for a strong flow (figure 8c), each of which has a localized
structure in space and a quantized morphological number m(ν). For the longitudinal
rolls, each mode is a solution that has envelopes localized in space and stationary
in time, whereas for the two-dimensional cells each mode corresponds to a Hopf
bifurcation and consists of a pair of time-dependent, oscillatory solutions.
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(b)

y

x

Figure 6. Interfacial disturbance of the longitudinal-roll morphology (perspective view) pre-
dicted by the linear stability analysis: (a) longitudinal rolls in the absence of flow, and
(b) flow-induced localized morphology. Solid circles are stagnation points and arrows indicate
the flow direction.

Consider the stability of the eigensolutions. For given flow and morphological
number, the growth rates of the eigenmodes are given by

σ = m− m(ν), ν = 1, 2, 3, . . . .

The unstable modes (σ > 0) give rise to morphological patterns. If the sequence {m(ν)}
is arranged in an ascending order (cf. figure 8c), then the minimum of the spectrum, i.e.
m(1), determines the marginal stability limit, since a morphological number m > m(1)

leads to modes of positive growth rates and is unstable. This minimum may be viewed
as the marginal stability limit ‘deformed’ from that of the pure morphological problem
(m = 0) due to the presence of the flow. We shall hereafter refer to this critical value
m(1) as mc, to emphasize that it is the marginal stability limit of the flow-modified
morphology.
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(a)

(b)

x

(c)

Figure 7. Interfacial disturbance of the 2D-roll morphology (side-view) predicted by the linear
stability analysis: (a) pure, (b) incommensurate, and (c) localized morphologies. Solid circles are
stagnation points and arrows indicate the flow direction.

(a) (b)

m

(c)

m m

m = 0
m(1)

m(2)

m(3)

m(4)

mc

Figure 8. Schematics of the flow-perturbed spectrum. Flow strength increases from (a) to (c).

Our calculations then indicate that the flow stabilizes the two-dimensional distur-
bance since the marginal morphological number mc has been delayed (mc > 0), but
destabilizes the three-dimensional disturbance because the instability occurs before
the pure morphological instability (mc < 0). A WKB-type analysis delivers the asymp-
totic structures of the quantized modes. The 2D-roll equation is in the form of the
one-dimensional Schrödinger equation: [∂2

η +E−U(η)]Ψ = 0, in which the amplitude
of the (2π/α)-periodic potential U(η) is equivalent to the flow strength, the energy E
corresponds to the morphological number, and the wave function Ψ is analogous to
the shape function in our morphological problem. In this case the asymptotic analysis
for the second-order, parametric-excitation equation is readily available (e.g. Connor
et al. 1984). The first eigenmode of the Bohr–Sommerfeld quantization condition
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(Fröman 1979) immediately delivers the marginal stability boundaries and the local
structures (assuming δ > 0):

2D-roll: mc ∼ 1
2
αδ1/2, ωc ∼ δ − 1

2
αδ1/2,

H ∼ exp { 1
4
(−1± i) (δ/α2)1/2(αη − αη±)2 ± iωcτ}, δ/α2 � 1.

}
(5.3)

Here, αη± = (2n ± 1
2
)π. The requirement that α̂δ̂ in (3.3) should be small sets an

upper bound on the validity of the asymptotics. In agreement with the results of
the branch-tracing calculations, the eigensolutions have localized structures at the
positions where the tangential component of the flow is strong. The discrete modes
are the ‘turning-point’ solutions in the WKB analysis.

For the longitudinal-roll equation, the general theory is not as well-documented as
that of the second-order equation, but the structures of the quantized modes can still
be obtained from matched asymptotic methods. Through matching the phases of the
branches of the WKB solutions, we find that the marginal stability boundary and the
localized solution can be approximated by

longitudinal-roll: mc ∼ −(χ− 1)αδ∗, ωc = 0,

H ∼
∫ ∞

0

cos (ξt) e−t
4/4 dt, δ∗/(α3ε2)� 1,

 (5.4)

where ξ is the distance measured from the centre of the envelope function:

ξ =

(
4δ∗

α3ε2

)1/4

(αη − 2nπ). (5.5)

One may observe that (5.4) is an eigensolution (ν = 1 mode) of a ‘comparison’
equation

−d4H

dξ4
+ ξ

dH

dξ
+ νH = 0, ν = 1, 2, 3, . . . , (5.6)

which describes the local behaviour of the parametric-excitation system when the
asymptotic expansions cos αη ∼ 1 and sin αη ∼ αη, and substitutions of (5.5) and
m/(αδ∗) + χ = ν are performed. Integrating (5.6) by the method of steepest descent,
we obtain the asymptotic formula for the envelope function:

H ∼
√

2
3
π ξ−1/3 exp (− 3

8
ξ4/3) cos ( 3

8

√
3ξ4/3 − 1

6
π). (5.7)

The above formula is valid in the limit of 1 � ξ � [δ∗/(α3ε2)]1/4 or, equivalently,
[δ∗/(α3ε2)]−1/4 � αη � 1 in terms of the flow coordinate.

We can now summarize the morphological instabilities and the related scalings
obtained from the linear theory. We see that the imposed spatially periodic flow

stabilizes the 2D-roll morphology. The instability is delayed by (M −Mc) ∝ α̂δ̂1/2,

written in the primitive δ̂–α̂ variables. When the rolls have a tilt angle θ the stabi-

lization is then controlled by the factor α̂(δ̂ cos θ)1/2. Thus, the morphology becomes
more unstable as θ approaches π/2. The most unstable configuration is at θ ≡ π/2
(longitudinal rolls), when the above scaling breaks down and the instability moves

to (M −Mc) ∝ −α̂δ̂. The width of the envelope function changes from (α̂2/δ̂)1/4 for

the 2D-roll (cf. equation (5.3)) to (α̂3/δ̂)1/4 for the longitudinal-roll morphology (cf.
equation (5.5)).
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6. Weakly nonlinear interaction
Near the marginal stability boundary the nonlinear slow-variable equations (4.1),

(4.2) may describe evolutions of finite-amplitude disturbances. Of interest is the
development of the localized wave envelopes obtained from the linear stability theory.
In the asymptotic limits (5.3), (5.4) (cf. figure 8c), the discrete, mode-like spectrum is
an appropriate setting for bifurcation analysis. Branching solutions at the marginal
stability point mc, and the possible mode–mode interaction nearby can be analysed
by the Lyapunov–Schmidt reduction procedure (Golubitsky & Schaeffer 1985). We
shall continue considering the two-dimensional and longitudinal versions of the slow-
variable dynamics, and focus on the bifurcations of the discrete modes only.

For a given flow, the 2D-roll equation has two oscillatory modes that bifurcate
from the homogeneous state. We first shift the coordinate of the singular point mc
and stretch the oscillating frequency ω by imposing the following equations:

m = mc + λ, ω = ωc + $(λ).

The variable λ is viewed as the primary bifurcation parameter. Interactions of the
two oscillatory modes near λ = 0 can be written

H(η, τ) = A1e
iωτΦ1(η) + A2e

−iωτΦ2(η) +W (η, τ).

Here, Φ1 and Φ2 are the spatial functions of the two eigenmodes, Ai are (complex)
modal amplitudes, andW is the perturbed shape function which is set to be orthogonal
to Φi and is at o(|A|). The reduction procedure projects the nonlinear system (4.1)
onto the two-dimensional space (A1, A2); the reduced system (bifurcation equation)
has the form

λA1 − aA1(κ1|A1|2 + κ2|A2|2) = 0,

λA2 − aA2(κ1|A2|2 + κ2|A1|2) = 0,

}
(6.1)

in which the coefficients κi involve calculations of inner products of Φ1 and Φ2.
We compute those coefficients using the asymptotic formula (5.3), and find that

κ1 > 0 and is O(1), but κ2 = O([δ/α2]1/4 exp[−c̃(δ/α2)1/2]) where c̃ is a positive
O(1) constant. The exponentially small κ2 results from the fact that the envelopes of
the two eigenfunctions (Φ1 and Φ2) are separated in space, which results in a weak
coupling only. Figure 9(b) sketches the bifurcation diagrams showing this mode–
mode interaction. It is seen that the mixed-mode, |A1| = |A2| = [λ/{(κ1 + κ2)a}]1/2,
is stable when a > 0 (supercritical), and the pure modes, |Ai| = [λ/(κ1a)]

1/2, are
always unstable. Possible unfolding diagrams through imperfections are exhibited in
Golubitsky & Schaeffer (1985).

The longitudinal-roll equation can be analysed by the same procedure. Branches
that have the localized structure (5.4) are treated as a single-mode bifurcation, and
the equation of the modal amplitude A has the form

λA− aκ3A|A|2 = 0.

Our calculation using (5.4) shows that κ3 > 0 and is O(1). The corresponding
bifurcation diagram consists of a single pitchfork (figure 9c), in which the supercritical
branch is stable and subcritical branch unstable.

The fact that κ1 and κ3 are O(1), and κ2 � 1, suggests that, in the scaling regime
we have considered, the flow modifies cellular patterns strongly, but the nonlinear
branching structures may still be deduced from the pure morphological problem
(which determines the sign of a), with the help of symmetry arguments for example.
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Figure 9. Schematics of (a) marginal stability boundaries in the asymptotic limits, (b) bifurcation
diagram for the 2D-roll equation, and (c) bifurcation diagram for the longitudinal-roll equation.

It is readily seen that e iφH is also a solution if H is a solution of (4.1) or (4.2),
where φ is an arbitrary phase angle. This S1 symmetry in a complex plane is due
to the translational invariance of the pure morphological cells on the crystal plane.
Similarly, SO(2) : (A1, A2) → (e iφA1, e

−iφA2) due to the translation of time, and
Z2 : (A1, A2) → (A2, A1) due to reflection in the x-axis, also occur on the travelling
cells.

We use numerical computations to verify the bifurcation diagrams obtained above.
The slow-variable equations (4.1), (4.2) are integrated using a finite-difference method,
with periodic boundary conditions posed on a 2π/α-domain. First, we confirm the
stability boundaries and eigenfunction structures predicted by the linear theory. To
achieve this purpose we set a ≡ 0, and march shape disturbances in time for given
pairs of morphological and flow parameters. The number of grid points used here is
typically 103 in order to resolve the localized structures. Stability boundaries marked
by growth or decay of disturbances in long-time evolutions compare favourably with
those shown in figures 4 and 5, with deviations of less than 1%.

Next, the structures of bifurcation diagrams, figure 9(b, c), are verified by examining
whether disturbances approach the supercritical solutions when a > 0, or are shielded
by the barrier of subcritical solutions when a < 0. Our computations show that the
branching solutions obtained through the reduction procedure are, indeed, realizable.
For an example, grey-scale figures 10 and 11 display the evolution of the longitudinal-
and 2D-roll dynamics with given parameters. The evolution clearly demonstrates a
strong tendency of the flow to produce localized envelopes at the described locations
on the interface. The longitudinal rolls are first convected to the converging stagnation
point, where the localized envelope forms after a transient time (figure 10). When
the interfacial disturbance is reconstructed using the normal mode, the envelope
function leads to the cellular pattern shown in figure 6(b). For the two-dimensional
rolls, disturbances near the stagnation points are suppressed, leaving oscillating wave
packets in between (figure 11a). This oscillatory pattern is the mixed-mode solution
and, when coupled with the roll disturbance e iβcx, results in two bands of travelling
cells within a flow period (figure 11b), as predicted by the linear theory (cf. figure 7c).
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Figure 10. Spatiotemporal evolution of a longitudinal-roll disturbance: δ∗/(α3ε2) = 100, m/(α4ε2) =
−250, a/(α4ε2) = 6, and χ = 4.0. Grey-scale represents the height of the interfacial disturbance.
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Figure 11. Spatiotemporal evolution of (a) a 2D-roll disturbance: δ/α2 = 400, m/α2 = 13, a/α2 = 6,
and (b) the corresponding two-dimensional travelling cells. Grey-scale represents the height of the
interfacial disturbance.

7. Conclusions
In summary, we investigated the effects of a cellular convective flow imposed

on the directional solidification of a dilute binary alloy. The imposed flow has

spatial wavenumber α̂ and strength parameter δ̂ that control the perturbation to the
interfacial deformation. A multiple-scale analysis is performed near the onset of the
morphological instability, which results in a weakly nonlinear equation in slow space–
time variables. The dynamics of the front is parametrically excited by the imposed
flow. Its linear problem is solved by the numerical branch-tracing method. We find
that the remote, spatially periodic flow stabilizes two-dimensional disturbances in the
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flow direction, yet promotes three-dimensional instability. The previously observed,
localized two-dimensional morphology (Bühler & Davis 1998) is identified as the
quantization of the eigenstates, in which the unstable modes are discrete in an
unbounded space, and the perturbed interfacial structures are forced to be spatially
synchronized with the flow. The stability boundary and the asymptotic structure
of the eigenmodes are obtained by the WKB method in the limit of α̂ → 0. The
nonlinear branching structure is delivered through the Lyapunov–Schmidt procedure.
Numerical computations confirm the analytical results.

Linear stability analysis shows that the flow stabilizes two-dimensional but destabi-
lizes three-dimensional disturbances. The mechanism may be tightly bound with the
structure of the neutral stability curve shown in figure 2(a). A disturbance along the
flow direction (figure 7) is either compressed or stretched near the stagnation points
by the tangential-flow component. This effectively changes its wavenumber so that
the local β becomes larger or smaller than the critical value of the pure morpho-
logical instability. The surface tension or solute diffusion help stabilize the interface
locally. In contrast, when a disturbance has a three-dimensional structure (figure 6),
the solute redistribution will play an important role. The imposed convective field
raises the solute concentration at the converging stagnation points (cf. equation (3.4))
and promotes the constitutional undercooling. This redistribution is further amplified
by the normal component near the perturbed interface, which lowers the critical
morphological number and hence destabilizes the interface. The two mechanisms
then suggest that, near the onset of the instability, patterns like figure 7 may occur
in a confined, two-dimensional geometry (Hele-Shaw slot, for example). In a fully
three-dimensional setting one would expect to see a pattern close to figure 6, since it is
preferred. We note that qualitatively similar behaviour has been reported in the earlier
experiment of Hämäläinen (1967), who found that morphological instability occurs
first at convergent stagnation points that are at the corners of convection cells in a
three-dimensional setting, even though in his experiment the flow and morphological
cells have comparable wavelengths.

This work was supported by NASA, Microgravity Sciences and Application Pro-
grams.
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